fbpx
End the duopoly

The cosmic commute towards star and planet formation

isualisation of the observed velocity flows in the spiral galaxy NGC 4321, measured using the radio emission of the molecular gas (carbon monoxide): along the vertical axis, this image shows the velocities of the gas, while the horizontal axis represents the spatial extent of the galaxy. The wave-like oscillations in gas velocity are visible throughout the galaxy. Credit: T. Müller/J. Henshaw/MPIA The molecular gas in galaxies is organized into a hierarchy of structures. The molecular material in giant molecular gas clouds travels along intricate networks of filamentary gas lanes towards the congested centers of gas and dust where it is compressed into stars and planets, much like the millions of people commuting to cities for work around the world.

To better understand this process, a team of astronomers led by Jonathan Henshaw at Max Planck Institute for Astronomy (MPIA) have measured the motion of gas flowing from galaxy scales down to the scales of the gas clumps within which individual stars form. Their results show that the gas flowing through each scale is dynamically interconnected: while star and planet formation occurs on the smallest scales, this process is controlled by a cascade of matter flows that begin on galactic scales. […]

Related Posts
1 of 618

read more here —> phys.org

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. AcceptRead More