fbpx
End the duopoly

Researchers track how bacteria purge toxic metals

Escherichia coli. Credit: Rocky Mountain Laboratories, NIAID, NIH Bacteria have a cunning ability to survive in unfriendly environments.

For example, through a complicated series of interactions, they can identify—and then build resistance to— toxic chemicals and metals, such as silver and copper. Bacteria rely on a similar mechanism for defending against antibiotics.

In E. coli bacterium, the inner membrane sensor protein CusS mobilizes from a clustered form upon sensing copper ions in the environment. CusS recruits the transcription regulator protein CusR and then breaks down ATP to phosphorylate CusR, which then proceeds to activate gene expression to help the cell defend against the toxic copper ions.

Cornell researchers combined genetic engineering, single-molecule tracking and protein quantitation to get a closer look at this mechanism and understand how it functions. The knowledge could lead to the development of more effective antibacterial treatments.

The team’s paper, “Metal-Induced Sensor Mobilization Turns on Affinity to Activate Regulator for Metal Detoxification in Live Bacteria,” published May 28 in Proceedings of the National Academy of Sciences .

“We were really interested in the fundamental mechanism,” said Peng Chen, the Peter J.W. Debye Professor of Chemistry in the College of Arts and Sciences and the paper’s senior author. “The broader concept […]

Related Posts
1 of 528

read more here —> phys.org

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. AcceptRead More