End the duopoly

Researchers synthesize artificial solid-state crystal structures using laser light


Schematic representation of an experimental system. Credit: Pickup, L. et. al./Nature Communications Researchers at the Hybrid Photonics Laboratories in Skoltech and Southampton (U.K.), in collaboration with Lancaster University (U.K.), have demonstrated a new optical method to synthesize artificial solid-state crystal structures for cavity polaritons using only laser light. The results could lead to the realization of field-programmable polariton circuitry and new strategies to create guided light and robust confinement of coherent light sources. The results were recently published in the journal Nature Communications .

Creating artificial lattices for quantum particles permits researchers to explore physics in an environment that might not be conventionally found in nature. Artificial lattices are especially appealing since their symmetries often lead to exactly solvable models and a transparent understanding of their properties. Designing them, however, is a challenging task with limited flexibility. Materials need to be irreversibly engineered to get the job done, and even optical lattice techniques for cold atoms cannot produce arbitrary lattice shapes.

The researchers, Dr. Lucy Pickup (Southampton), Dr. Helgi Sigurdsson (Southampton and Skoltech), Prof Janne Ruostekoski (Lancaster), and Prof Pavlos Lagoudakis (Skoltech and Southampton), overcame this challenge by developing a new method to create arbitrarily shaped and reprogrammable artificial lattices using […]

read more here —> phys.org

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More