End the duopoly

Histone H3-H4 tetramer found to be a copper reductase enzyme

Recombinant X. laevis histone H3-H4 tetramer interacts with cupric ions. (A) Left: X. laevis (Xl) nucleosome core particle structure [Protein Data Bank (PDB) 1KX5] (38). The box delineates the H3-H3′ interface. Right: Interface residues H3H113 and H3C110 are shown. (B) Alignment of the C-terminal region of S. cerevisiae (S. c.) and Homo sapiens (H. s.) histone H3 and archaeal [Methanothermus fervidus (M. f.)] histones. (C) Left: UV-visible absorbance spectrum of the Xl H3-H4 tetramer incubated with or without Cu2+. Inset: Differential absorbance compared to tetramer without Cu2+. Right: Buffer-corrected differential absorbance of the indicated Xl tetramers. AU, absorbance units; eq., equivalents. (D) Representative ITC titration profile of the Xl H3-H4 tetramer. Circles are experimental data, and the line is the fitted curve. Average dissociation constant (KD), enthalpy change (ΔH), and stoichiometry (N) ± SD of the H3-H4 tetramer-Cu2+ complex calculated from three experiments are shown. Single-letter abbreviations for the amino acid residues are as follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr. Credit: Science (2020). […]

Related Posts
1 of 631

read more here —> phys.org

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. AcceptRead More